Excess Enthalpies of 1-Propanol + n-Hexane + n-Decane or n-Dodecane at 298.15 K

Luo Wang, George C. Benson,* and Benjamin C.-Y. Lu

Department of Chemical Engineering, University of Ottawa, 770 King Edward Avenue, Ottawa, Ontario, Canada K1N 9B4

Excess enthalpies, measured at 298.15 K in a flow microcalorimeter, are reported for the ternary systems $C_3H_7OH(1) + C_6H_{14}(2) + C_rH_{2r+2}(3)$ with $\nu = 10$ and 12. Smooth representations of the data are used to calculate constant enthalpy contours on a Roozeboom diagram.

Introduction

The properties of multicomponent mixtures, comprising an alcohol and two or more *n*-alkanes, are of interest in the technology of alcohol-blended gasoline. A recent paper (1) from our laboratory reported excess enthalpies for the ternary systems ethanol + *n*-hexane + *n*-decane and ethanol + *n*hexane + *n*-dodecane. As an extension of that work, we have determined excess enthalpies for the two corresponding systems with ethanol replaced by 1-propanol.

Experimental Section

Anhydrous 1-propanol, with a stated purity exceeding 99 mol %, was obtained from the Aldrich Chemical Co. Its density, measured at 298.15 K in an Anton-Paar digital densimeter, was 779.74 kg m⁻³. The *n*-hexane, *n*-decane, and *n*-dodecane were the same as used in our previous work (1).

Excess molar enthalpies were measured in an LKB flow microcalorimeter (model 10700-1) thermostated at 298.150 \pm 0.002 K. Details of this equipment and its operation have

Table I. Experimental Results for the Excess Molar Enthalpies, $H^{E}_{m,i/r}$ of $x_1 C_3H_7OH + (1 - x_1) C_2H_{2r+2}$ Mixtures at 298.15 K and Their Representations by Equation 2

x 1	H ^E m,12 ^a / (J mol ⁻¹)	x 1	H ^E m,13 ^b / (J mol ⁻¹)	x 1	H ^E _{m,13} ^c / (J mol ⁻¹)	
~1		· · · · · ·		~1		
$\nu = 6$		$\nu = 10$		$\nu = 12$		
0.0502	344.0	0.0500	411.1	0.0500	441.1	
0.0502	349.1	0.0500	411.6	0.0998	593.6	
0.1001	439.8	0.1000	548.4	0.1501	678.1	
0.1501	501.6	0.1000	541.2	0.2000	731.2	
0.1999	544.6	0.1500	621.5	0.2500	773.0	
0.2501	570.4	0.2003	671.5	0.3004	796.0	
0.2999	584.5	0.2500	710.2	0.3320	815.6	
0.3508	587.8	0.3000	742.0	0.3499	818.5	
0.3992	576.6	0.3501	751.7	0.3856	819.6	
0.4498	558.8	0.4001	761.7	0.4372	824.0	
0.5008	532.9	0.4495	756.5	0.4878	811.3	
0.5499	500.4	0.5002	731.8	0.5390	785.4	
0.6005	462.9	0.5495	707.3	0.5886	753.2	
0.6502	419.6	0.6000	672.7	0.6366	715.7	
0.6990	373.2	0.6501	632.1	0.6837	667.1	
0.7430	329.0	0.6999	585.0	0.7313	610.4	
0.8001	265.7	0.7497	525.1	0.7782	543.0	
0.8281	231.4	0.8005	454.8	0.8234	469.6	
0.8500	205.4	0.8500	371.2	0.8686	380.4	
0.8988	142.2	0.9000	270.9	0.9130	276.0	
0.9500	68.9	0.9499	151.5	0.9568	153.3	

^a $H^{\mathbb{E}_{m,12}}(J \text{ mol}^{-1}) = x_1(1 - x_1)(1 - 0.9839z)^{-1}(2134.1 - 941.2z - 339.8z^2 - 243.2z^3); s = 1.5. {}^{b} H^{\mathbb{E}_{m,13}}(J \text{ mol}^{-1}) = x_1(1 - x_1)(1 - 0.9205z)^{-1}(2941.0 - 1853.0z + 312.1z^2 - 689.0z^3 + 705.2z^4); s = 2.9. {}^{c} H^{\mathbb{E}_{m,13}}(J \text{ mol}^{-1}) = x_1(1 - x_1)(1 - 0.8809z)^{-1}(3221.1 - 2034.6z + 475.7z^2 - 632.6z^3 + 925.3z^4); s = 2.1.$

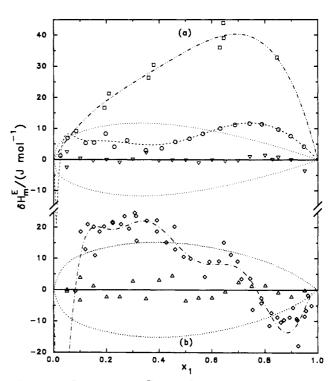


Figure 1. Deviations $\delta H^{\rm E}_{\rm m} = \{H^{\rm E}_{\rm m}({\rm expt}) - H^{\rm E}_{{\rm m},ij}({\rm eq} 2)\}$ of the excess molar enthalpy at 298.15 K: (a) $x_1 \, C_3 H_7 OH + (1 - x_1) \, C_6 H_{14}$, this work (∇), Brown et al. (6) (\Box) (-..., our smoothing of data), Veselý et al. (7) (O) (-..), $\pm 2\%$ deviation from eq 2 (...); (b) $x_1 \, C_3 H_7 OH + (1 - x_1) \, C_{10} H_{22}$, this work (Δ), Christensen et al. (8) (\diamond) (-..), $\pm 2\%$ deviation from eq 2 (...).

been described previously (2, 3). In studying the ternary systems, the excess molar enthalpy $H^{\rm E}_{\rm m,1+23}$ was measured for several pseudobinary systems, in which component 1 (1propanol) was added to a binary mixture of components 2 (n-hexane) and 3 (n-decane or n-dodecane) having a fixed mole ratio x_2/x_3 . These binaries were prepared by weighing. The excess molar enthalpy $H^{\rm E}_{\rm m,123}$ of the ternary system was then obtained from the relation

$$H^{\rm E}_{\rm m,123} = H^{\rm E}_{\rm m,1+23} + (1 - x_1) H^{\rm E}_{\rm m,23} \tag{1}$$

where $H^{\rm E}_{\rm m,23}$ is the excess molar enthalpy of the particular binary *n*-alkane mixture. Values of $H^{\rm E}_{\rm m,23}$ for *n*-hexane + *n*-decane and *n*-hexane + *n*-dodecane were taken from the literature (4, 5). The errors of $H^{\rm E}_{\rm m,1+23}$ are estimated to be

Table II. Experimental Excess Molar Enthalpies, $H^{E}_{m,1+23}$, at 298.15 K for the Addition of 1-Propanol to *n*-Hexane + *n*-Decane Mixtures To Form C₃H₇OH (1) + C₆H₁₄ (2) + C₁₀H₂₂ (3) and Values of $H^{E}_{m,123}$ Calculated from Equation 1 Using $H^{E}_{m,23}$ from Reference 4

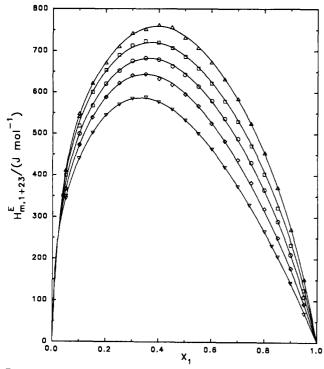
<i>x</i> ₁	$\frac{H^{\rm E}_{m,1+23}{}^{a}}{({ m J}\ { m mol}^{-1})}$	H ^E _{m,123} / (J mol ⁻¹)	<i>x</i> ₁	$H^{\rm E}_{{ m m},1+23}a/({ m J mol}^{-1})$	H ^E _{m,123} / (J mol ⁻¹)	<i>x</i> ₁	H ^E _{m,1+23} ^a / (J mol ⁻¹)	H ^E _{m,123} / (J mol ⁻¹)
			$x_2/x_3 = -$	$0.3284; H^{\rm E}_{\rm m,23} = 1$	1.5 J mol ⁻¹			
0.0500	399.6	410.5	0.3997	719.5	726.4	0.7503	470.8	473.6
0.1000	518.2	528.5	0.4518	706.5	712.8	0.8000	403.5	405.7
0.1500	600.0	609.7	0.5008	686.3	692.1	0.8501	322.8	324.5
0.2002	653.8	663.0	0.5500	658.0	663.2	0.9000	233.0	234.2
0.2499	690.2	698.8	0.6000	621.9	626.4	0.9500	124.8	125.4
0.2998	712.0	720.0	0.6501	578.8	582.8			
0.3499	723.2	730.6	0.7005	52 9 .7	533.1			
			$x_2/x_3 = 0$	$0.9912; H^{E}_{m,23} = 1$	4.4 J mol ⁻¹			
0.0399	350.4	364.2	0.4001	679.1	687.7	0.7501	430.3	433.9
0.1000	499.3	512.2	0.4513	663.2	671.1	0.7999	365.6	368.5
0.1500	567.4	579.7	0.4996	642.8	650.0	0.8501	290.2	292.3
0.1999	620.4	631.9	0.5502	614.3	620.7	0.8984	210.1	211.6
0.2500	651.9	662.7	0.6006	579.6	585.4	0.9500	109.2	109.9
0.3001	675.7	685.8	0.6505	536.8	541.8			
0.3499	682.4	691.7	0.7000	488.4	492.7			
			$x_2/x_3 =$	$3.1408; H^{E}_{m,23} = 9$	∂.3 J mol ⁻¹			
0.0501	366.5	375.3	0.3501	643.8	649.8	0.6999	437.1	439.9
0.1001	473.0	481.3	0.4018	632.5	638.0	0.7501	381.9	384.2
0.1001	472.2	480.6	0.4505	618.0	623.0	0.7997	320.5	322.3
0.1489	538.6	546.5	0.5002	595.5	600.1	0.8497	250.7	252.1
0.1999	588.2	595.6	0.5494	567.3	571.5	0.8992	177.3	178.2
0.2500	621.8	628.7	0.5996	525.0	528.7	0.9501	92.2	92.7
0.3000	640.4	646.9	0.6495	482.5	485.7			

^a Ternary term for representation of $H^{E}_{m,1+23}$ by eqs 3 and 4: $H^{E}_{m,T}/(J \text{ mol}^{-1}) = x_1 x_2 x_3 (1855.1 - 5997.2 x_1 - 4936.3 x_2 + 4747.0 x_1^2 + 10166.1 x_1 x_2 + 3964.8 x_2^2)$; s = 3.7.

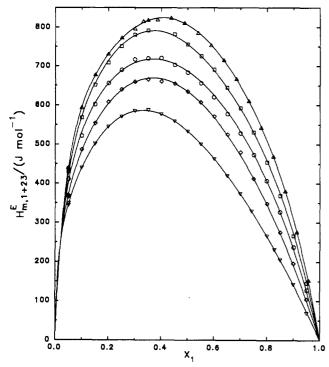
Table III. Experimental Excess Molar Enthalpies, $H^{E}_{m,1+23}$, at 298.15 K for the Addition of 1-Propanol to *n*-Hexane + *n*-Dodecane Mixtures To Form C₃H₇OH (1) + C₆H₁₄ (2) + C₁₂H₂₆ (3) and Values of $H^{E}_{m,123}$ Calculated from Equation 1 Using $H^{E}_{m,23}$ from Reference 5

<i>x</i> ₁	$H^{\rm E}_{\rm m,1+23}a/({ m J mol}^{-1})$	H ^E _{m,123} / (J mol ⁻¹)	<i>x</i> ₁	$H^{\rm E}_{m,1+23}a/({ m J\ mol^{-1}})$	H ^E _{m,123} / (J mol ⁻¹)	<i>x</i> 1	$H^{\rm E}_{{ m m},1+23}a/({ m J mol}^{-1})$	H ^E _{m,123} / (J mol ⁻¹)
			$x_2/x_3 =$	$0.3328; H^{\rm E}_{\rm m,23} = 3$	0.6 J mol ⁻¹			
0.0500	430.5	459.6	0.3502	791.6	811.5	0.7498	530.4	538.1
0.0500	438.8	467.8	0.4500	781.6	798.4	0.8001	454.4	460.5
0.0999	567.6	595.2	0.5002	755.5	770.8	0.8498	368.6	373.2
0.1502	651.9	677.9	0.5515	725.2	738.9	0.9001	266.0	269.0
0.1999	708.5	733.0	0.6000	690.6	702.8	0.9499	145.8	147.3
0.2499	750.4	773.3	0.6500	645.1	655.9			
0.2998	780.0	801.5	0.7000	592.3	601.5			
			$x_{2}/x_{3} =$	$0.9845; H^{E}_{m,23} = 3$	9.5 J mol ⁻¹			
0.0500	410.6	448.1	0.3998	720.0	743.7	0.7504	473.1	482.9
0.1001	521.1	556.7	0.4508	702.5	724.2	0.7994	407.2	415.1
0.1501	602.4	635.9	0.4997	683.3	703.0	0.8499	327.1	333.0
0.2000	655.9	687.5	0.5498	655.9	673.6	0.9002	237.5	241.4
0.2501	689.9	719.5	0.5990	620.1	635.9	0.9501	128.1	130.0
0.3000	716.0	743.7	0.6503	577.9	591.7			
0.3500	719.5	745.1	0.7002	528.3	540.1			
			$x_{2}/x_{3} =$	2.8956; $H^{E}_{m,23} = 2$	8.1 J mol ⁻¹			
0.0495	369.4	396.1	0.3499	665.6	683.9	0.7001	479.6	488.0
0.0495	365.7	392.4	0.3998	660.8	677.6	0.7499	412.2	419.2
0.1000	486.3	511.6	0.4514	654.6	670.0	0.8001	348.3	353.9
0.1501	553.8	577.6	0.5004	634.8	648.8	0.8501	275.0	279.2
0.2001	608.3	630.7	0.5494	607.4	620.1	0.9000	195.7	198.5
0.2502	639.8	660.9	0.5999	571.0	582.3	0.9499	104.2	105.6
0.3000	659.2	678.9	0.6512	525.4	535.2			

^a Ternary term for representation of $H^{E}_{m,1+23}$ by eqs 3 and 4: $H^{E}_{m,T}/(J \text{ mol}^{-1}) = x_1x_2x_3(-1252.7 + 33198.2x_1 + 8596.7x_2 - 78880.3x_1^2 - 112649.7x_1x_2 - 9200.4x_2^2 + 51959.0x_1^3 + 129996.0x_1^2x_2 + 88705.0x_1x_2^2); s = 4.9.$


less than 0.5% over most of the range of propanol mole fractions. Errors in the mole fractions of the final ternary mixtures are estimated to be less than 5×10^{-4} .

Results and Discussion


Measurements of the excess molar enthalpies, $H^{E}_{m,ij}$, for the binary systems formed by mixing 1-propanol with each of the three *n*-alkanes are summarized in Table I. Representations of these results by the skewed Redlich-Kister form

$$H^{E}_{m,ij}/(J \text{ mol}^{-1}) = x_{i}(1-x_{i})(1+h_{o}z)^{-1}\sum_{k=1}^{n}h_{k}z^{k-1} \quad (2)$$
$$z = 1 - 2x_{i} \text{ and } j > i$$

and the standard deviations, s, of these representations are given in the footnotes of the table. Values of $H^{\rm E}_{\rm m,12}$ for 1-propanol + *n*-hexane at 298.15 K have been reported previously by Brown et al. (6) and by Veselý et al. (7). The

Figure 2. Excess molar enthalpies, $H^{E}_{m,1+23}$, of C₃H₇OH (1) + C₆H₁₄ (2) + C₁₀H₂₂ (3) at 298.15 K. Experimental results: (∇) $x_3 = 0$; (\diamond) $x_2/x_3 = 3.1408$; (\bigcirc) $x_2/x_3 = 0.9912$; (\square) $x_2/x_3 = 0.3284$; (\triangle) $x_2 = 0$. Curve: (-) calculated from eqs 3 and 4 using the forms given in the footnotes of Tables I and II.

Figure 3. Excess molar enthalpies, $H^{E}_{m,1+23}$, of $C_{3}H_{7}OH(1)$ + $C_{6}H_{14}(2) + C_{12}H_{26}(3)$ at 298.15 K. Experimental results: $(\nabla) x_{3} = 0; (\diamond) x_{2}/x_{3} = 2.8956; (O) x_{2}/x_{3} = 0.9845; (\Box) x_{2}/x_{3} = 0.3328; (\Delta) x_{2} = 0$. Curve: (---) calculated from eqs 3 and 4 using the forms given in the footnotes of Tables I and III.

system 1-propanol + n-decane has also been studied (8) but at a somewhat elevated pressure, 170 kPa. Deviations of these earlier data from the representations of our results are plotted in Figure 1. Apart from the relatively large deviations of the values from Brown et al. (6), there is agreement between our

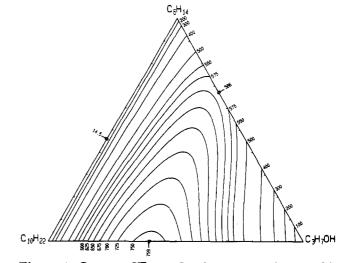
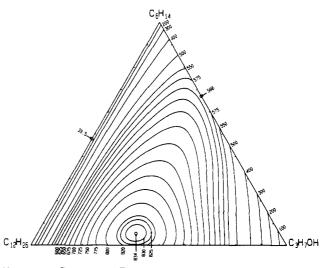



Figure 4. Constant $H^{\rm E}_{\rm m,123}/(\rm J~mol^{-1})$ contours for C_3H_7OH (1) + C_6H_{14} (2) + $C_{10}H_{22}$ (3) at 298.15 K, calculated from the representation of our experimental results by eqs 3 and 4 with forms from the footnotes of Tables I and II.

Figure 5. Constant $H^{E}_{m,123}/(J \text{ mol}^{-1})$ contours for $C_{3}H_{7}OH$ (1) + $C_{6}H_{14}$ (2) + $C_{12}H_{26}$ (3) at 298.15 K, calculated from the representation of our experimental results by eqs 3 and 4 with forms from the footnotes of Tables I and III.

results and the previously published data within $\sim 3\%$ over most of the mole fraction range.

The experimental results for $H^{\rm E}_{m,1+23}$ and the corresponding $H^{\rm E}_{m,123}$ are listed in Tables II and III for the two ternary mixtures. The values of $H^{\rm E}_{m,1+23}$ are plotted in Figures 2 and 3, along with the results for the binary systems having $x_2 =$ 0 or $x_3 = 0$. In all cases, the maximum values of $H^{\rm E}_{m,1+23}$ and $H^{\rm E}_{m,123}$ occur near $x_1 = 0.4$, and for comparable x_2/x_3 , the values of the maxima are larger for the mixture containing *n*-dodecane. For both systems at a constant value of x_1 , the enthalpies increase as the ratio x_2/x_3 decreases. This behavior is closely similar to that found previously for the ethanol systems (1). However, for a given x_1 and *n*-alkane mixture, $H^{\rm E}_{m,1+23}$ is somewhat larger for the 1-propanol system.

The values of $H^{\rm E}_{m,1+23}$ were represented as a sum of binary terms (9) with an added ternary contribution:

$$H^{\rm E}_{\rm m,1+23} = \left(\frac{x_2}{1-x_1}\right) H^{\rm E}_{\rm m,12} + \left(\frac{x_3}{1-x_1}\right) H^{\rm E}_{\rm m,13} + H^{\rm E}_{\rm m,T}$$
(3)

Following Morris et al. (10), the relation

$H^{\rm E}_{\rm m,T}/({\rm J}\,{\rm mol}^{-1}) = x_1 x_2 x_3 (c_0 + c_1 x_1 + c_2 x_2 + c_3 x_1^2 + c_3 x_1^2)$ $c_4x_1x_2 + c_5x_2^2 + c_8x_1^3 + c_7x_1^2x_2 + c_8x_1x_2^2 + c_9x_2^3$ (4)

was adopted for the ternary term. Least-squares analyses, in which eqs 3 and 4 were fitted to the experimental values of $H^{E}_{m,1+23}$, led to the forms given for $H^{E}_{m,T}$ in the footnotes of Tables II and III, where the standard deviations, s, of the representations are also indicated. Curves obtained from these representations are shown in Figures 2 and 3.

Some contours, corresponding to constant values of $H^{E}_{m,123}$, are plotted in Figures 4 and 5. These are very similar to those obtained previously for the ethanol systems (1). The main difference is the occurrence of a maximum located inside the triangular plot for the 1-propanol + n-hexane + n-dodecane system.

Literature Cited

- (1) Wang, L.; Benson, G. C.; Lu, B. C.-Y. J. Chem. Thermodyn., in press
- Tanaka, R.; D'Arcy, P. J.; Benson, G. C. Thermochim. Acta 1975, (2) 11, 163
- (3) Kimura, F.; Benson, G. C.; Halpin, C. J. Fluid Phase Equilib. 1983, 11, 245
- (4) Marsh, K. N.; Ott, J. B.; Costigan, M. J. J. Chem. Thermodyn. 1980, 12, 343
- (5) Ott, J. B.; Marsh, K. N.; Stokes, R. H. J. Chem. Thermodyn. 1981, 13, 371.
- (6) Brown, I.; Fock, W.; Smith, F. Aust. J. Chem. 1964, 17, 1106. (7)
- Veselý, F.; Dohnal, V.; Prchal, M. Collect. Czech. Chem. Commun. 1982, 47, 1045. (8) Christensen, J. J.; Izatt, R. M.; Stitt, B. D.; Hanks, R. W. J. Chem. Thermodyn. 1979, 11, 261.
- Tsao, C. C.; Smith, J. M. Chem. Eng. Prog. Symp. Ser. No. 7 1953, (9) 49, 107.
- (10) Morris, J. W.; Mulvey, P. J.; Abbott, M. M.; Van Ness, H. C. J. Chem. Eng. Data 1975, 20, 403.

Received for review March 19, 1992. Accepted May 26, 1992. We are indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support of this work.

Registry No. 1-Propanol, 71-23-8; n-hexane, 110-54-3; ndecane, 124-18-5; n-dodecane, 112-40-3.